

Landesbetrieb Liegenschafts- und Baubetreuung Energiebericht 2017

Inhaltsverzeichnis

Einle	eitung		4
1. V	Verbräuche und Kosten LBB-Liegenschaften		5
1.1	Übersicht LBB-Liegenschaften + Hochschulen 2007–2015	5	
1.2	LBB-Liegenschaften ohne Hochschulen 2002–2015	6	
1.2.1	Liegenschaftsstruktur des Landesbetriebs LBB und Flächenentwicklung	6	
1.2.2	Übersicht Gesamtverbräuche und -kosten	6	
1.2.3	Energieverbrauch Heizung/Warmwasser	7	
1.2.4	Stromverbrauch	10	
1.2.5	Wasserverbrauch	11	
1.2.6	Kosten und Energiepreisentwicklung	12	
1.2.7	Entwicklung der Emissionen im CO ₂ -Äquivalent	15	
1.3	Hochschulen 2007–2015	17	
2. E	Energieeffizientes Bauen als Unternehmensziel		20
2.1	Die 5-Säulen-Energiestrategie	20	
2.2	LBB-Richtlinie zum energieeffizienten Bauen und Sanieren	21	
2.2.1	Energieeffiziente Sanierungen	23	
2.3	Einsatz von regenerativen Energien und Kraft-Wärme-Kopplung	25	
2.3.1	Fotovoltaik	25	
2.3.2	Solarthermie	28	
2.3.3	Erdwärme	29	
2.3.4	Biomasse	29	
2.3.5	Blockheizkraftwerke (BHKW)	31	
2.4	Optimierter Gebäudebetrieb	33	
2.5	Vertragsmanagement	37	
2.6	Jahresenergiebericht und Controlling	39	
3. F	Projektbeispiele		41
4 7	Zusammenfassung und Aushlick		52

Einleitung

Der Landesbetrieb Liegenschafts- und Baubetreuung (Landesbetrieb LBB) Rheinland-Pfalz legt mit seinem Energiebericht 2017 eine ausführliche Darstellung der Energieverbräuche und Energiekosten aller LBB-Liegenschaften inklusive der 2007 in das wirtschaftliche Eigentum des Landesbetriebs LBB übergegangenen rheinland-pfälzischen Hochschulen vor.

Kapitel 1 enthält zunächst Gesamtaussagen zu den LBB-Liegenschaften und Hochschulen, bevor sich dann detaillierte Verbrauchs- und Kostenaussagen zu den LBB-Liegenschaften ohne Hochschulen (Finanzämter, Forstämter, Polizeigebäude, Gerichtsgebäude, Vermessungsämter, JVAs etc.) anschließen. Hier liegen bereits Daten seit 2002 vor, sodass Entwicklungstendenzen über einen längeren Zeitraum verfolgt werden können.

Es folgen Angaben zu Energieverbräuchen und -kosten der Hochschulliegenschaften. Diese Daten beziehen sich nur auf die Jahre 2007 bis 2015, da die Hochschulen erst 2007 in das Portfolio des Landesbetriebs LBB aufgenommen wurden. Die Verbrauchsdaten werden seitdem für die einzelnen Hochschulstandorte abgefragt und nach einheitlichen Kriterien ausgewertet.

Bei den Verbrauchsdaten für Wärme werden sowohl der tatsächliche Verbrauch mit Kosten als auch der klimabereinigte Verbrauch (Referenzstandort Würzburg) angegeben, um eine Vergleichbarkeit der Jahresverbräuche zu ermöglichen.

Kapitel 2 befasst sich mit den strategischen Zielen des Landesbetriebs LBB und zeigt die Entwicklungen im Bereich regenerativer Energien und Kraft-Wärme-Kopplung.

Kapitel 3 stellt einige besonders herausragende Bauprojekte im Bereich des energieeffizienten Bauens vor.

Kapitel 4 fasst die Kernaussagen zusammen und gibt einen Ausblick.

1. Verbräuche und Kosten LBB-Liegenschaften

1.1 Übersicht LBB-Liegenschaften + Hochschulen 2007–2015

Der Energiebericht des Landesbetriebs LBB stellte ab 2002 nur die LBB-Liegenschaften ohne Hochschulen wie Finanzämter, Gerichtsgebäude, Polizeigebäude oder Justizvollzugsanstalten dar. Mit der 2007 erfolgten Eingliederung der Hochschulen in den Immobilienbestand des Landesbetriebs wurden auch die Verbräuche der Hochschulen in den LBB-Energiebericht aufgenommen. Die folgende Tabelle zeigt den klimabereinigten Gesamtverbrauch Wärme, den Strom- und den Wasserverbrauch für LBB- und Hochschulliegenschaften sowie die aus den Energieverbräuchen resultierenden Emissionen im CO₂-Äquivalent.

		Wärme		St	rom	Wasser- und Abwasser		Treibhausgas-
	Verb	orauch	Kosten	Verbrauch	Kosten	Verbrauch	Kosten Wasser und	Emissionen im CO ₂ -
	unbereinigt	klimabereinigt				Frischwasser	Abwasser	Äquivalent
	GWh	GWh	Mio. €	GWh	Mio. €	Mio. m ³	Mio. €	to
2007	341,1	409,1	18,6	187,8	24,1	1,08	3,7	218.800
2012	355,9	383,3	21,9	198,0	33,7	1,00	3,7	214.558
2013	357,9	378,8	20,4	193,2	34,4	1,00	3,7	210.353
2014	303,9	379,4	19,1	197,0	37,0	1,01	3,8	214.050
2015	334,7	378,9	19,2	193,6	38,5	1,01	3,8	211.262

Tab. 1 Gesamtverbräuche und -kosten absolut

Insgesamt verbrauchten 2015 alle Liegenschaften etwa 335 Mio. Kilowattstunden Wärme, fast 195 Mio. Kilowattstunden Strom und rund 1 Mio. Kubikmeter Wasser. Die Gesamtkosten für alle Medien beliefen sich auf rund 61,5 Mio. Euro brutto, die flächenbezogenen Kosten-Kennwerte liegen bei circa 23,3 Euro pro Quadratmeter Nettogrundfläche für die Medien Wärme, Strom, Wasser und Abwasser.

Die auf die Nettogrundfläche bezogenen Verbräuche und Kosten sind nachfolgend dargestellt.

	Verbrauch Heizung/Warmwasser			Stromverbrauch			Wasserverbrauch		
	kWh/m² (klimabereinigt)		kWh/m²		l/m²				
	LBB	Hochsch.	Mittel	LBB	Hochsch.	Mittel	LBB	Hochsch.	Mittel
2007	146,9	164,4	153,7	47,7	106,7	70,5	429	369	405
2012	136,0	150,1	143,1	47,3	115,6	81,5	375	363	369
2013	134,5	146,2	140,3	46,5	110,8	78,6	365	367	366
2014	134,4	149,2	141,8	46,1	114,9	80,5	365	383	374
2015	133,8	151,5	142,6	46,2	112,5	79,4	363	394	379

Tab. 2 Gesamtverbräuche flächenspezifisch (Bezugsfläche NGF)

	Kosten He	eizung/Wa	rmwasser	Kosten Strom		Kosten Wasser+Abwasser			Summe		
		€/m²		€/m²		€/m²		€/m²			
	LBB	Hochsch.	Mittel	LBB	Hochsch.	Mittel	LBB	Hochsch.	Mittel	LBB	Hochsch.
2014	6,7	7,6	7,2	9,4	20,3	14,9	1,46	1,14	1,3	17,6	29,0
2015	6,6	7,9	7,3	9,3	20,1	14,7	1,49	1,12	1,3	17,4	29,1

Tab. 3 Gesamtkosten flächenspezifisch (Bezugsfläche NGF)

1.2 LBB-Liegenschaften ohne Hochschulen 2002–2015

1.2.1 Liegenschaftsstruktur des Landesbetriebs LBB und Flächenentwicklung

Die Aussagen dieses Kapitels beziehen sich nur auf LBB-Liegenschaften ohne Hochschulen, die im Auswertungsjahr überwiegend von einer Landesdienststelle genutzt wurden und das ganze Jahr in Nutzung waren (kein Leerstand).

Die nachfolgende Tabelle 4 zeigt die Veränderungen der auszuwertenden Liegenschaften im LBB-Portfolio seit 2005. Dabei fallen unter "Zugänge" und "Abgänge" nicht nur Neubauten und Verkäufe, sondern auch Liegenschaften, die aufgrund einer Generalsanierung wieder in die oder aus der Auswertung genommen wurden (z. B. von 2008 auf 2009: Ministerium des Innern, für Sport und Infrastruktur, ISIM)

Jahr	Veränderung	Anzahl	Zugänge		Abg	änge	Summe
		Liegen-	Anzahl		Anzahl		
		schaften	Liegen-	NGF (m ²)	Liegen-	NGF (m ²)	NGF (m ²)
		insges.	schaften		schaften		
2005		382					
2006	von 2005 auf 2006	376	4	9.284	10	21.916	-12.633
2007	von 2006 auf 2007	372	8	29.019	12	38.289	-9.270
2008	von 2007 auf 2008	368	2	3.601	6	7.230	-3.629
2009	von 2008 auf 2009	373	7	25.488	2	5.570	19.918
2010	von 2009 auf 2010	377	7	18.485	3	4.915	13.570
2011	von 2010 auf 2011	381	6	12.225	2	7.225	5.000
2012	von 2011 auf 2012	372	0	0	9	7.725	-7.725
2013	von 2012 auf 2013	370	1	409	3	1.183	-774
2014	von 2013 auf 2014	360	1	11.732	11	40.557	-28.825
2015	von 2014 auf 2015	353	1	460	8	9.475	-9.015

Tab. 4 Änderungen im ausgewerteten Liegenschaftsbestand ohne Hochschulen

Wie für die letzten Energieberichte wurden für die Liegenschaften, deren Bewirtschaftung und Rechnungskontrolle noch beim Nutzer liegt, die Rechnungen der Versorger beim Nutzer angefordert und daraus die Verbräuche ausgewertet. Die Daten der meisten Strom-, Gas-, Biomasse- und Fernwärmerechnungen wurden durch die in der LBB-Zentrale gebündelte Rechnungsprüfung erfasst.

1.2.2 Übersicht Gesamtverbräuche und -kosten

Nachfolgend sind die gesamten Medienverbräuche (Tab. 5) in Gigawattstunden (GWh) und die zugehörigen Kosten (Tab. 6) zusammengefasst. Als Bezugsgröße für flächenspezifische Kennwerte dient die Nettogrundfläche (NGF).

Die (wenigen) fehlenden Verbrauchsdaten wurden dabei über die Gesamtfläche aller auszuwertenden Liegenschaften hochgerechnet. Der Endenergieverbrauch für Heizung und Warmwasser wurde für diesen Vergleich <u>nicht</u> klimabereinigt.

	Energieverbrauch Heizung/Warmwasser	Strom- verbrauch	Wasser- verbrauch	Abwasser
	GWh (unbereinigt)	GWh	m^3	m^3
2002	246,9	72,8	758.300	733.100
2012	212,5	80,0	635.000	612.500
2013	207,4	78,6	618.000	591.400
2014	169,6	76,7	606.876	576.532
2015	186,2	76,5	600.278	570.264
Veränderung zu 2002	-24,6%	5,1%	-20,8%	-22,2%

Tab. 5 Gesamtverbräuche LBB-Liegenschaften ohne Hochschulen

	Gesamtkosten Heizung/ Warmwasser	Gesamtkosten Strom	Gesamtkosten Wasser	Gesamtkosten Abwasser	Gesamt- kosten
	EUR	EUR	EUR	EUR	EUR
2002	9.771.000	8.519.000	1.417.000	1.374.000	21.081.000
2012	12.791.401	14.566.000	1.197.000	1.216.000	29.770.401
2013	12.162.088	14.355.000	1.180.000	1.196.000	28.893.088
2014	11.166.684	15.788.424	1.225.890	1.204.953	29.385.951
2015	10.882.051	15.485.786	1.254.582	1.220.366	28.842.785
Veränd. zu 2002	11,4%	81,8%	-11,5%	-11,2%	36,8%

Tab. 6 Gesamtkosten LBB-Liegenschaften ohne Hochschulen

1.2.3 Energieverbrauch Heizung/Warmwasser

Gesamtverbrauch

Die folgende Tabelle 7 zeigt, dass die klimabereinigten und auf einen Jahreszeitraum bezogenen spezifischen Verbräuche für Heizung und Warmwasser von 2002 bis 2015 stetig leicht gefallen sind.

Die Änderung der Nettogrundfläche ist im Wesentlichen auf Änderungen im Liegenschaftsbestand zurückzuführen, ergänzt um weitere Nutzungsänderungen in bestehenden Liegenschaften.

Jahr	abs. Verbrauch unbereinigt	abs. Verbrauch klimabereinigt	Fläche NGF (Nettogrundfläche)	spezif. Verbrauch klimabereinigt
	kWh	kWh	m ²	kWh/m ²
2002	246.895.000	296.984.000	1.677.700	177,0
2012	212.533.000	230.142.000	1.692.000	136,0
2013	207.441.000	227.520.000	1.691.000	134,5
2014	169.696.317	223.257.433	1.662.675	134,2
2015	186.232.342	221.197.741	1.653.659	133,7
Veränd. zu 2002	-24,6%	-25,5%	-1,4%	-24,5%

Tab. 7 absoluter und spezifischer Energieverbrauch Heizung/Warmwasser der LBB-Liegenschaften ohne Hochschulen

Der klimabereinigte Energieverbrauch für Heizung und Warmwasser sank von fast 300 Gigawattstunden im Jahr 2002 auf 221 Gigawattstunden im Jahr 2015. Das entspricht einer Reduzierung um 25,5 Prozent. Gründe dafür liegen vor allem in den fortlaufenden Sanierungstätigkeiten im Bestand, die insbesondere auch energetische Verbesserungen mit sich bringen. Ebenso wird über die Energierichtlinie ein besonders energieeffizienter Standard für Neubau- und Sanierungsmaßnahmen sichergestellt, der die Verbräuche des Gesamtportfolios reduziert.

Abb. 1

Gesamtverbrauch nach Energieträgern

Zur Beheizung und Warmwasserbereitung wurde 2015 in den 353 ausgewerteten Liegenschaften zu 54 Prozent Erdgas, zu 25,9 Prozent Fernwärme und zu 2,7 Prozent Öl als Energieträger eingesetzt. Der Anteil der Fernwärme steigt, während der Anteil von Erdgas und Öl tendenziell sinkt. Der Anteil regenerativer Energien (unter "Biomasse") wurde seit 2002 deutlich ausgebaut,

er liegt 2015 bei circa 7,3 Prozent. Extra ausgewiesen wurde der Anteil an Gas für Wärme aus Kraft-Wärme-Kopplung, der von 0,1 Prozent im Jahr 2002 auf 10 Prozent im Jahr 2015 gesteigert werden konnte. Die nachfolgenden Schaubilder (Abb. 2 und 3) verdeutlichen die Entwicklungstendenz seit 2002 und die weiterhin vorherrschende Dominanz des Energieträgers Gas.

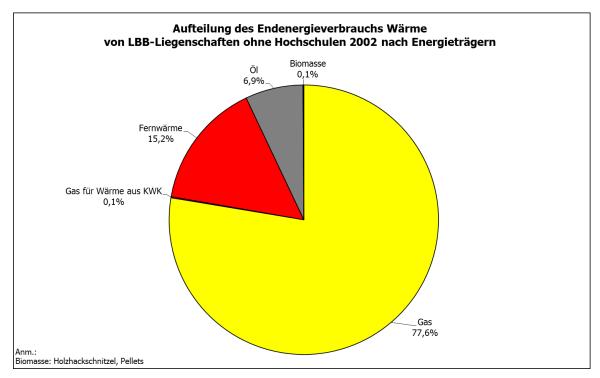


Abb. 2

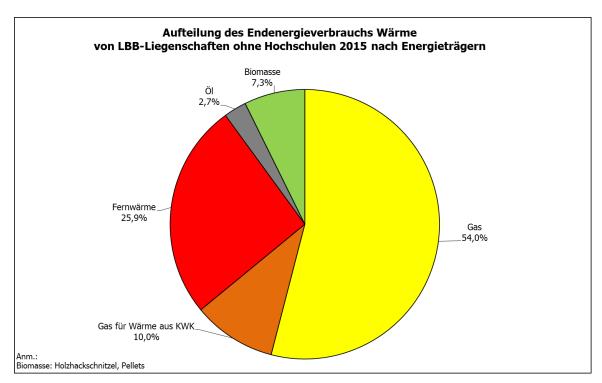


Abb. 3

1.2.4 Stromverbrauch

<u>Gesamtverbrauch</u>

Folgende Abbildung 4 zeigen, dass der auf die Nettogrundfläche und auf einen Jahreszeitraum bezogene spezifische Stromverbrauch von 2002 auf 2010 ansteigt. Der Anstieg ist u. a. auf die zunehmende Ausstattung im Bereich der EDV und auf den nachträglichen Einbau von Klimaanlagen zurückzuführen. Mit einem Höhepunkt im Jahr 2010 scheint dieser Trend zum Stillstand gekommen zu sein, und für die Jahre bis 2015 ist eine fallende Tendenz festzustellen. Es wird jedoch weiterhin eine der vorrangigen Aufgaben sein, Maßnahmen zur Stromeinsparung zu verfolgen. Da der hier dargestellte Stromverbrauch zu wesentlichen Teilen auch den Strom für die Ausstattung mit elektrischen Geräten (Computer, Server ...) umfasst und somit vom Einkauf und vom Verhalten des Nutzers abhängt, müssen auch seitens der Nutzer weiterhin Anstrengungen unternommen werden, die Stromverbräuche zu senken. Eine effizientere und damit weniger Wärme produzierende Ausstattung bewirkt dabei im Sommer die Absenkung der Wärmelasten, die im Gebäude entstehen, und verringert somit auch den Aufwand für Gebäudekühlung.

Jahr	abs. Verbrauch	Fläche NGF (Nettogrundfläche)	spezif. Verbrauch	
	kWh	m ²	kWh/m²	
2002	72.789.000	1.677.700	43,4	
2012	80.023.000	1.692.275	47,3	
2013	78.607.000	1.691.501	46,5	
2014	76.727. 44 8	1.662.675	46,1	
2015	76.506.495	1.653.659	46,2	
Veränd. zu 2002	5,1%	-1,4%	6,5%	

Tab. 8 absoluter und spezifischer Stromverbrauch der LBB-Liegenschaften ohne Hochschulen

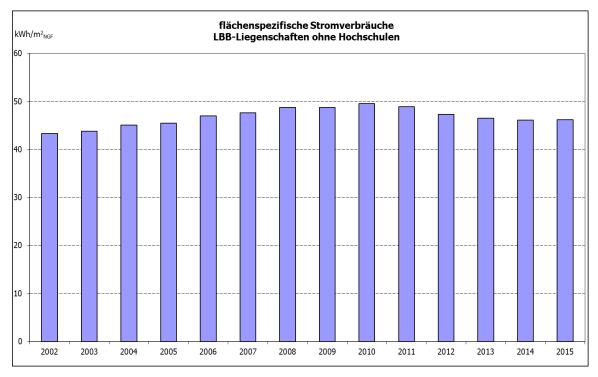


Abb. 4

1.2.5 Wasserverbrauch

Gesamtverbrauch

Die Wasserverbräuche sanken seit 2002 von rund 0,76 Mio. Kubikmeter auf 0,60 Mio. Kubikmeter im Jahr 2013. Das entspricht einer Einsparung von über 20 Prozent.

Der auf die Nettogrundfläche bezogene Wasserverbrauch ist im Jahr 2011 gegenüber dem Jahr 2002 um fast 20 Prozent gesunken. Abbildung 5 zeigt die Entwicklung des flächenbezogenen Wasserverbrauchs von 2002 bis 2015.

Jahr	abs. Verbrauch	Fläche NGF (Nettogrundfläche)	Personen	spezif. Verbrauch flächenbezogen	spezif. Verbrauch personenbezogen
	m³	m²		l/m²	l/Pers Tag
2002	758.300	1.677.700	45.900	452	45,3
2012	635.000	1.692.000	45.600	375	38,2
2013	618.000	1.691.000	44.000	365	38,5
2014	606.876	1.662.675	43.000	365	38,7
2015	600.278	1.653.659	42.500	363	38,7
Veränd. zu 2002	-20,8%	-1,4%	-7,4%	-19,7%	-14,5%

Tab. 9 absoluter und spezifischer Wasserverbrauch der LBB-Liegenschaften ohne Hochschulen



Abb. 5

1.2.6 Kosten und Energiepreisentwicklung

Die nachfolgende Tabelle 10 zeigt, dass die auf die Fläche bezogenen Gesamtkosten für Wärme, Strom, Wasser und Abwasser von 2002 auf 2015 um fast 37 Prozent gestiegen sind.

Jahr	Gesamtkosten (Wärme, Strom, Wasser, Abw.)	Fläche NGF (Nettogrundfläche)	spezif. Kosten
	EUR	m²	EUR/m ²
2002	21.079.791	1.677.700	12,56
2012	29.770.401	1.692.000	17,59
2013	28.893.088	1.691.000	17,09
2014	29.385.951	1.662.675	17,67
2015	28.842.785	1.653.659	17,44
Veränd. zu 2002	36,8%	-1,4%	38,8%

Tab. 10 spezifische Gesamtkosten der LBB-Liegenschaften ohne Hochschulen

Abbildung 6 zeigt die Aufteilung der Kosten nach Medien. Es ist erkennbar, dass der Anteil der Wärme- und der Stromkosten gegenüber den Wasser- und Abwasserkosten dominant ist.

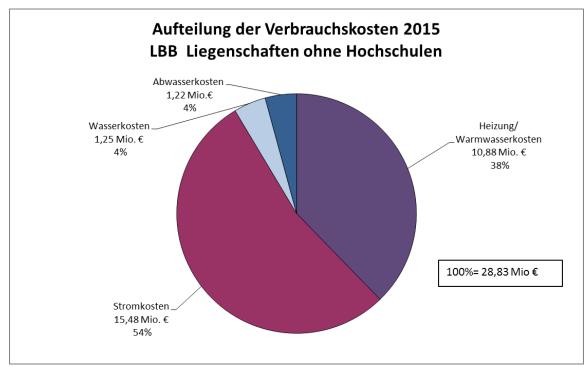


Abb. 6

Energiepreisentwicklung

Die folgende Abbildung 7 zeigt die bundesweite durchschnittliche Entwicklung der Energiepreise – getrennt nach Energieträgern – und des Wasserpreises seit 2000.

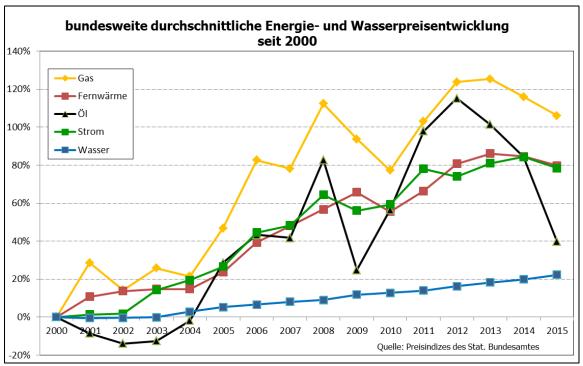


Abb. 7 bundesweite Energie- und Wasserpreisentwicklung seit 2000

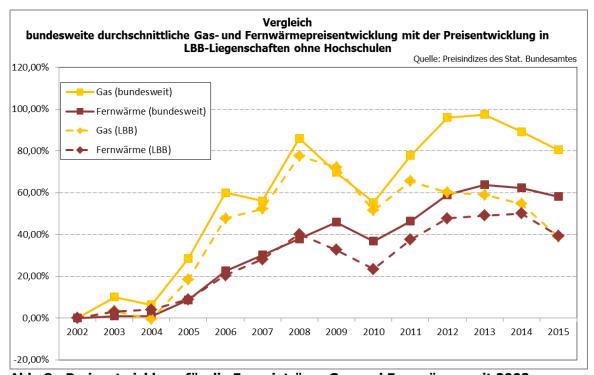


Abb. 8 Preisentwicklung für die Energieträger Gas und Fernwärme seit 2002 Vergleich zwischen Bundesdurchschnitt und LBB-Liegenschaften ohne Hochschulen

Durch die erfolgreichen Verhandlungen des Landesbetriebs LBB mit den Fernwärmeversorgern (z. B. Neuanschluss von großen Liegenschaften zu günstigen Fernwärmepreisen) und durch die seit 2010 durchgeführte Medienausschreibung im Bereich Gas liegt die Preisentwicklung für die Energieträger Gas und Fernwärme bei den Landesliegenschaften unter dem bundesweiten Durchschnitt.

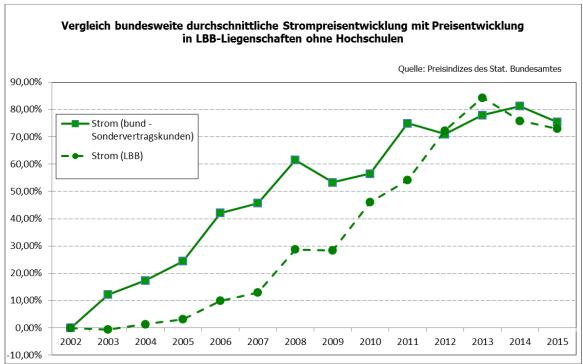


Abb. 9 Bundesweite Strompreisentwicklung im Vergleich zu der bei LBB-Liegenschaften ohne Hochschulen seit 2002

Abbildung 9 zeigt die bundesweite Strompreisentwicklung im Vergleich mit der Preisentwicklung für die Landesliegenschaften ohne Hochschulen.

Tabelle 11 zeigt die Preisentwicklung für Energie und Wasser von 2002 bis 2015 im Mittel für alle LBB-Liegenschaften ohne Hochschulen und im Vergleich dazu die Entwicklung im gleichen Zeitraum für den Bundesdurchschnitt gemäß Statistischem Bundesamt.

		Preise	Preise	Preise	Preise	Preise	Preise
		Gas Ct/kWh	Fernwärme Ct/kWh	Öl Ct/kWh	Strom Ct/kWh	Wasser EUR/m³	Abwasser EUR/m³
	2002	3,66	5,82	3,08	11,70	1,87	1,87
	2012	5,86	8,60	7,50	20,16	2,05	1,98
	2013	5,82	8,68	7,44	21,68	2,12	1,99
	2014	5,66	8,74	7,63	20,58	2,02	2,09
	2015	5,08	8,12	5,31	20,24	2,09	2,14
Veränderung zu 2002	LBB	38,9%	39,4%	72,2%	73,0%	11,9%	14,2%
verancerung zu zuuz	bundesweit	80,4%	58,1%	62,4%	75,4%	22,7%	

Tab. 11 Energie- und Wasserpreisentwicklung der LBB-Liegenschaften ohne Hochschulen

Tabelle 12 zeigt die mittlere jährliche Energiepreissteigerung von 2002 bis 2015. Aus ihr geht hervor, dass bei LBB-Liegenschaften in diesem Zeitraum für den Bereich Wärme jährlich eine mittlere Energiepreissteigerung von 3,1 Prozent zu verzeichnen war.

Zeitraum	Gas	Fernwärme	Öl	Strom
2002-2015	2,6%	2,6%	4,3%	4,3%
Mittelwert Wärme				

Tab. 12 mittlere jährliche Energiepreissteigerung der LBB-Liegenschaften ohne Hochschulen

1.2.7 Entwicklung der Emissionen im CO₂-Äquivalent

Insgesamt sanken zwischen 2002 und 2015 die Emissionen im CO_2 -Äquivalent der LBB-Liegenschaften. Die Einsparungen im Bereich des Wärmeverbrauchs gleichen den Anstieg im Strombereich mehr als aus. Die gesamten Emissionen im CO_2 -Äquivalent konnten von 2002 bis 2015 um über 20 Prozent gesenkt werden.

Die Emissionen im CO₂-Äquivalent im Bereich des Wärmeverbrauchs konnten sogar um über 30 Prozent reduziert werden.

Die jährlichen Anpassungen des CO_2 -Äquivalentfaktors für Strom durch die Vergrößerung des regenerativen Anteils bei der Stromversorgung der Bundesrepublik sind hier nicht berücksichtigt. Die daraus resultierenden Einsparungen sowie die Einsparung durch den Bezug von Ökostrom sind somit bisher nicht dargestellt.

Die Reduzierungen der Treibhausgasemissionen ergeben sich hier nur durch die Erfolge des Landesbetriebs LBB in der Energieeinsparung und durch einen kontinuierlichen Ausbau von Biomasse (Holzpellets, Holzhackschnitzel), Kraft-Wärme-Kopplung im Energieträgermix Wärme sowie von eigengenutzten Fotovoltaikanlagen in den LBB-eigenen Liegenschaften ohne Hochschulen.

Abb. 10 Entwicklung der Emissionen im CO₂-Äquivalent der LBB-Liegenschaften ohne Hochschulen

		Verbräu	che klima	bereinigt	t				Emi	ission		
	2002	2012	2013	2014	2015	CO2- Äquivalent *	2002	2012	2013	2014	2015	Veränderung zu 2002
	Mio.kWh	Mio.kWh	Mio.kWh	Mio.kWh	Mio.kWh	g/kWh	t CO2	t CO2	t CO2	t CO2	t CO2	%
Gas	229,89	136,78	137,20	119,22	119,45	249	57.244	34.058	34.163	29.686	29.743	-48,0%
Gas für Wärme aus KWK	0,40	10,25	10,45	24,30	22,15	249	100	2.552	2.602	6.051	5.515	5423,7%
Fernwärme	45,05	59,60	58,03	57,70	57,31	217	9.777	12.934	12.593	12.521	12.436	27,2%
Öl	20,57	10,15	9,12	6,68	6,02	303	6.233	3.075	2.765	2.024	1.824	-70,7%
Biomasse	0,18	12,28	12,62	15,44	16,10	42	8	516	530	648	676	8894,4%
Heizstrom	0,10	0,06	0,09	0,09	0,09	647	63	39	58	58	58	-8,2%
Summe Heizung						73.424	53.174	52.712	50.988	50.253	-31,6%	
flächenspezifische CO	2-Emissio	nen (kg/m	2NGF)				43,8	31,4	31,2	30,7	30,4	-30,6%
Strom Netzbezug	72,60	74,85	73,39	68,94	68,62	647	46.971	48.428	47.483	44.604	44.397	-5,5%
Strom aus KWK	0,19	5,12	5,16	7,78	7,88	249	48	1.275	1.285	1.962	1.962	4025,7%
Summe Strom							47.018	49.703	48.768	46.566	46.359	-1,4%
flächenspezifische CO	2-Emissio	nen (kg/m	2NGF)				28,0	29,4	28,8	28,0	28,0	0,0%
Summe Heizung+St	rom						120.443	102.877	101.480	97.554	96.612	-19,8%
flächenspezifische CO	2-Emissio	nen (kg/m	2NGF)				71,8	60,8	60,0	58,7	58,4	-18,6%
Gutschrift Fotovoltaik												
erzeugter Strom 1,93 1,95 2,01 2,10					2,10	-413	0	-797	-805	-830	-867	
Summe Heizung+Strom+Gutschrift Fotovoltaik					120.443	102.080	100.674	96.724	95.745	-20,5%		
flächenspezifische CO2-Emissionen (kg/m2NGF)					71,8	60,3	59,5	58,2	57,9	-19,4%		
* Quelle: IWU/GEMIS 4.3												

Tab. 13 Emissionen im CO₂-Äquivalent der LBB-Liegenschaften ohne Hochschulen

1.3 Hochschulen 2007–2015

Die Hochschulliegenschaften wurden erst im Jahr 2007 in das wirtschaftliche Eigentum des Landesbetriebs LBB überführt. Die rechnungsmäßigen Verbrauchsdaten werden seitdem von den einzelnen Hochschulstandorten abgefragt und nach einheitlichen Kriterien ausgewertet. Im Rahmen des Energiecontrollings Hochschulen (vgl. S. 39) wird der Energieverbrauch der Hochschulgebäude seit Ende 2011 mit Hilfe einer neuen Zählerstruktur, Zählerfernauslesung und einer Monitoring-Software kontrolliert. Dadurch wird bei Unregelmäßigkeiten im Verbrauch ein sofortiges Eingreifen möglich und Energieeinsparpotenziale können direkt identifiziert werden.

In folgender Tabelle 14 sind die Medienverbräuche und -kosten der Hochschulen nach Versorgerabrechnungen seit 2007 angegeben.

		Wärme		Stro	om	Wasser- un	d Abwasser	
	Verl	orauch	Kosten	Verbrauch	Kosten	Verbrauch	Kosten	Gesamtkosten
	unbereinigt	klimabereinigt						
	GWh	GWh	Mio. €	GWh	Mio. €	Mio. m ³	Mio. €	Mio. €
2007	137,71	168,8	6,6	109,7	13,8	0,38	1,22	21,62
2008	145,53	167,0	8,1	113,5	14,8	0,37	1,20	24,10
2009	140,00	159,6	8,3	110,9	15,3	0,38	1,23	24,83
2010	155,40	154,5	7,9	111,3	16,2	0,36	1,17	25,27
2011	131,66	161,6	7,0	114,3	18,0	0,38	1,24	26,22
2012	143,47	153,2	9,2	117,9	19,1	0,37	1,25	29,51
2013	150,55	151,3	8,2	114,6	20,0	0,38	1,29	29,50
2014	134,26	156,1	7,9	120,2	21,3	0,40	1,19	30,38
2015	148,54	157,7	8,3	117,1	23,0	0,41	1,16	32,49

Tab. 14 Gesamtverbräuche und -kosten Hochschulen

Beim klimabereinigten Wärmeverbrauch der Hochschulliegenschaften für Heizung und Warmwasser ist von 2007 bis 2015 eine insgesamt leicht sinkende Tendenz festzustellen, welche allerdings Schwankungen unterworfen ist. Der Strombedarf dagegen steigt tendenziell an, Wasser- und Abwasserverbrauch bleiben nahezu konstant.

Im Gegensatz zu den LBB-Liegenschaften ohne Hochschulen zeigt sich bei den Verbrauchskostenanteilen der Hochschulen ein deutlich höhere Anteil der Stromkosten, welcher den hochschulspezifischen Nutzungen geschuldet ist, etwa bei Labornutzungen und Flächen mit hohem Kühl- und Lüftungsbedarf.

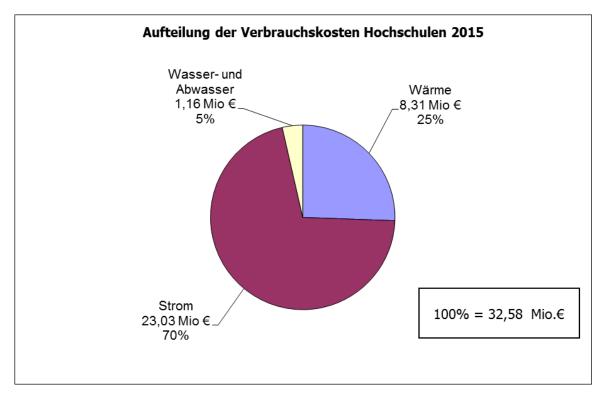


Abb. 11

Die Emissionen im CO_2 -Äquivalent der Hochschulliegenschaften sind zwischen 2007 und 2015 flächenspezifisch in etwa konstant. Die steigenden Emissionen im Strombereich werden durch die sinkenden Emissionen im Bereich Heizung- und Warmwasser ausgeglichen.

	Verbrauch klimabereinigt in Mio. kWh				CO ₂ - Äquivalent		CO ₂ -	Emissioner	ı in t		
	2007	2012	2013	2014	2015	g/kWh	2007	2012	2013	2014	2015
Gas	82,80	76,72	80,45	80,76	85,21	249	20.618	19.104	20.032	20.109	21.218
Öl	9,25	9,57	5,92	5,29	0,88	303	2.803	2.899	1.794	1.604	242
Fernwärme	76,80	67,02	64,90	70,12	70,51	217	16.665	14.544	14.084	15.216	15.200
Biomasse					2,51	42					106
Heizung gesamt	168,85	153,31	151,27	156,17	159,11		40.086	36.547	35.910	36.929	36.810
Strom	109,72	117,95	114,62	120,29	117,17	647	70.988	76.311	74.158	77.829	75.809
Gutschrift PV	0,24	0,92	0,94	0,96	0,98	-413	-101	-381	-389	-397	-405
Gesamtbilanz CO ₂ -Emissionen absolut in t						110.973	112.477	109.678	114.361	112.214	
	CO ₂ -Emissi	onen fläche	enspezifisch	n in kg/m² _N	GF		108,0	110,3	106,0	109,3	107,8

^{*} Quelle: IWU/GEMIS 4.3

Tab. 15 Emissionen im CO₂-Äquivalent der Hochschulen

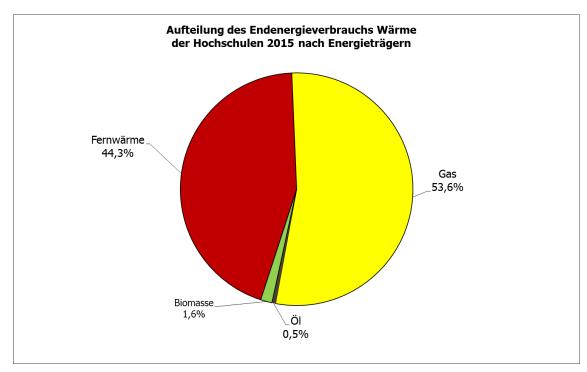


Abb. 12

Der Energieträgermix der Hochschulliegenschaften zeichnet sich 2015 durch eine hohe Fernwärme- und Gasquote aus. In 2015 wurde Biomasse als Energieträger Wärme ausgebaut. Für die verbleibenden Öl-Liegenschaften wird die Wärmeversorgung zu einem großen Teil bereits neu geplant.

2. Energieeffizientes Bauen als Unternehmensziel

2.1 Die 5-Säulen-Energiestrategie

Dass ökologische und ökonomische Aspekte bei der Entwicklung von Bauvorhaben nachhaltig beachtet werden, ist ein wichtiges Unternehmensziel des Landesbetriebs LBB – sowohl in Hinblick auf den Klimawandel als auch auf langfristig günstige Betriebskosten, speziell für Energie.

Der Landesbetrieb LBB verfolgt dieses Ziel des nachhaltigen Bauens mit einer eigenen Energiestrategie, bei deren Umsetzung das Energiemanagement (Standort 1: LBB-Zentrale Mainz; Standort 2: Competence Center Energiemanagement, Koblenz) durch die Leitstelle für regenerative Energien (Leitung: Landau) unterstützt wird.

Die 5 Säulen dieser Energiestrategie sind:

- 1. LBB-Richtlinie zum energieeffizienten Bauen und Sanieren
- 2. Einsatz von regenerativen Energieträgern und Kraft-Wärme-Kopplung
- 3. Optimierter Gebäudebetrieb
- 4. Vertragsmanagement
- 5. Energiemonitoring, Energiecontrolling und Jahresenergiebericht

2.2 LBB-Richtlinie zum energieeffizienten Bauen und Sanieren

Mit seiner Richtlinie "Energieeffizientes Bauen und Sanieren" sorgt der Landesbetrieb LBB seit 2006 konsequent für hohe energetische Qualitäten, indem beim Neubau und bei der Bestandssanierung die eigenen energetischen Ziele über die gesetzlichen Anforderungen der Energieeinsparverordnung (EnEV) hinaus deutlich höher angesetzt werden. Bei jedem Bauvorhaben wird geprüft, ob eine Realisierung in der besonders energiesparenden Passivhausbauweise möglich und wirtschaftlich darstellbar ist. In der 4. Auflage der Richtlinie wurden die verschärften Anforderungen der EnEV 2014 ab 2016 berücksichtigt. Die gesetzlichen Anforderungen der aktuellen Energieeinsparverordnung werden um bis zu 50 Prozent bei den Anforderungen an die Gebäudehülle übertroffen. Grundlegende Strategie dabei ist, mit einer sehr gut gedämmten Gebäudehülle den Wärmebedarf so weit abzusenken, dass der verbleibende Restwärmebedarf mit Hilfe von regenerativen Energieträgern in Anlagen vor Ort gedeckt werden kann und somit den CO₂-Ausstoß des Gebäudes weiter zu senken. Damit unterstützen wir aktiv den Klimaschutz und erfüllen die Vorbildfunktion der öffentlichen Hand.

Durch eine Entwurfsoptimierung lassen sich mit verhältnismäßigem Mehraufwand sehr energieund kostenoptimierte Gebäude errichten. Dabei gilt es, eine Gesamtkostenbetrachtung anzustellen, die die Wirtschaftlichkeit nicht nur nach den anfänglichen Investitionskosten bemisst, sondern in die auch die Lebenszykluskosten einfließen und hier vor allem die Betriebs- und die Energiekosten über die gesamte Nutzungsdauer.

Die Errichtung von Gebäuden im besonders energiesparenden Passivhausstandard oder auf nahezu Passivhausstandard entsprechendem Niveau wird weiter vorangetrieben. 2007 wurden das Forstdienstgebäude Trippstadt als erstes Passivhaus einer Landesverwaltung zertifiziert. Weil die Fotovoltaikanlage auf dem Dach mehr Energie erzeugt, als im gesamten Gebäude verbraucht wird, wird das Forstdienstgebäude Trippstadt sogar zum "Energiegewinnhaus". Auf Niedrigstenergieniveau fertiggestellt wurden 2010 außerdem die Gebäude für die LBB-Bauleitung auf dem Unicampus Mainz und die Polizeiinspektion in Ludwigshafen-Oppau. Bis zum Sommer 2011 wurden zwei weitere Projekte als vom Passivhaus-Institut zertifizierte Passivhäuser fertiggestellt: das Felix-Klein-Zentrum (Mathe-Institut) an der TU Kaiserslautern und der 2. Bauabschnitt des Internatsgebäudes am Heinrich-Heine-Gymnasium Kaiserslautern.

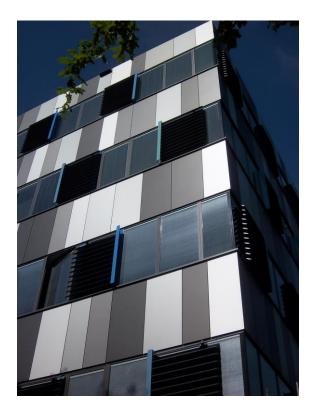
In den Jahren 2012 und 2013 fertiggestellt wurden ferner folgende Projekte auf Niedrigstenergiebzw. Passivhausniveau: die Neubauten für die Sozialwissenschaften und für die Anthropologie an der Johannes Gutenberg-Universität Mainz, der Laborneubau an der Universität Koblenz-Landau am Campus Koblenz sowie das Kommunikationszentrum mit Kindertagesstätte am Umweltcampus Birkenfeld.

2016 wurden – als weitere Referenzobjekte von besonderer ökonomischer und ökologischer Bedeutung – drei Gebäude der Erweiterung der Fachhochschule Kaiserslautern am Standort Kammgarn fertiggestellt. Neben einer Gebäudehülle, die die Anforderungen der EnEV 2014 übertrifft, sind die Bilanzkreise für den Wärme- und Kältebedarf CO_2 -neutral ausgelegt. Dies wird mit Hilfe des am Campus entlangfließenden Wassers der Lauter und kompensierend unter Einsatz von Fotovoltaikanlagen erreicht.

In Planung im Bereich der besonders effizienten und nachhaltigen Neubauten befinden sich die Erweiterungen der Hochschulen Ludwigshafen und Mainz. Der 2. Bauabschnitt der Hochschule Mainz wird als Pilotprojekt des Landes nach den Anforderungen des Bewertungssystems Nachhaltiges Bauen (BNB) des Bundes geplant und es wird ein Zertifikat im Silberstandard angestrebt. Im Bereich der Gebäudesanierung wird für das Projekt Landtagsgebäude eine sinngemäße Anwendung gemäß des Leitfadens Nachhaltiges Bauen vorgenommen, ebenso werden der Neubauteil und die Außenlagen nach den entsprechenden Modulen des BNB bewertet.

Grundsätzlich werden beim Bau von landeseigenen Gebäuden die Möglichkeiten für CO₂-neutrale Gebäudekonzepte geprüft und bei sinnvoller Anwendung und vertretbarem Aufwand realisiert.

Weitere Informationen wie die Richtlinie zum energieeffizienten Bauen und Sanieren sind im Internet unter www.lbbnet.de (Presse, Infos > Publikationen ...) zu finden.


2.2.1 Energieeffiziente Sanierungen

Bei energetischen Sanierungen im Bestand sind oftmals individuelle Lösungen erforderlich. Die energetischen Ziele auf Niveau eines Neubaus lassen sich bei Sanierungen meist nicht oder nur mit erheblichem Aufwand realisieren. Belange des Denkmal- und des Brandschutzes, der Statik sowie vorgegebene Grundrisszuschnitte und gegebene konstruktive Details erschweren oft das Erreichen eines hohen energetischen Standards. Auch der Einsatz regenerativer Energien ist häufig nicht oder nicht wirtschaftlich umsetzbar. Trotzdem lassen sich durch Sanierungen der Gebäudehülle und der Haustechnik hohe Einsparungen im Vergleich zum Ausgangszustand erzielen. Energiekonzepte mit Variantenuntersuchungen im Vorfeld einer Sanierung dienen der Grundlagenermittlung und erleichtern die Entscheidungen im Planungsprozess. Nachfolgend sind einige Sanierungen der letzten Jahre mit verschiedenen Schwerpunkten aufgelistet.

- Sanierung JVA Diez (Energiekonzept Nahwärmenetz regenerativ, Holzhackschnitzelkessel)
- Sanierung Staatliches Eifelgymnasium Neuerburg (Biomassekessel, Fotovoltaikanlage)
- Sanierung Staatskanzlei in Mainz (Nutzung von Grundwasser zur Kühlung, Lüftung mit Wärmerückgewinnung, optimierte Regeltechnik, Fernwärme)
- Sanierung Dienstleistungszentrum Ländlicher Raum Rheinpfalz in Neustadt/Weinstraße (Fotovoltaikanlage, Umstellung des Energieträgers auf Biomasse, Solarthermie)
- Sanierung Finanzamt Kaiserslautern, Eckelstraße (Sanierung Außenhülle)
- Sanierung Polizeidienstgebäude Kaiserslautern, Augustastraße (Sanierung Außenhülle: 16 bis 20 Zentimeter Dämmung WLG 032/040)
- Sanierung ASA Landau (Sanierung Gebäudehülle: 14 bis 20 Zentimeter Dämmung WLG 035, Sanierung Haustechnik, Fotovoltaikanlage, Intracting-Vereinbarung zwischen Landesbetrieb LBB und Nutzer)
- Sanierung JSA Schifferstadt (Sanierung Haustechnik: Biomassekessel, Fotovoltaikanlage + Blockheizkraftwerk decken circa 60 Prozent des Strombedarfs)
- Sanierung FH Trier AVZ-Gebäude D (Sanierung Gebäudehülle: Flachdach, Fassade: 20 Zentimeter Wärmedämmung WLG 035)

Abb. 13Sanierung FH Trier AVZ-Gebäude D vor Sanierung

Abb. 14Sanierung FH Trier AVZ-Gebäude D
nach Sanierung

Projekt Hocheffizienzpumpen für Heizsysteme

Ein Beispiel für die Effizienzsteigerung bestehender Anlagen ist das Projekt Hocheffizienzpumpen. Da die Pumpen für den Wasserkreislauf in den Heizungsanlagen über 6000 Betriebsstunden pro Jahr erreichen, kann der Ersatz einer alten und häufig ungeregelten Pumpe durch eine moderne Hocheffizienzpumpe zu einer erheblichen Energiekosten-Einsparung führen. Aus diesem Grund werden in den Gebäuden des Landesbetriebs LBB im Rahmen einer vorgezogenen Bauunterhaltung die alten Heizungspumpen durch neue Hocheffizienzpumpen ersetzt. Die Entscheidung, welche Pumpen ausgetauscht werden, erfolgt nach einer Bestandsaufnahme durch das Energiemanagement des Landesbetriebs LBB.

Steckbrief der Maßnahme

Start Hauptleistungsphase	2014
Laufzeit	circa 4 Jahre, bis 2018
Investitionskosten in technische	circa 1.300.000 Euro,
Anlagen und Geräte	ohne Kosten der Ingenieurleistungen
jährliche Einsparung Energiekosten	circa 280.000 Euro

2.3 Einsatz von regenerativen Energien und Kraft-Wärme-Kopplung

Der Landesbetrieb LBB ist bestrebt, für seine Immobilien den Anteil an regenerativ erzeugter Energie deutlich zu erhöhen. Dazu zählen vor allem der Einbau von Wärmeerzeugern, die mit Biomasse befeuert werden, der Einbau von Solarthermieanlagen zur Warmwasserbereitung und zur Heizungsunterstützung, der Einsatz von Fotovoltaikanlagen zur Stromerzeugung und die Nutzung von Erdwärme, in den meisten Fällen in Kombination mit Wärmepumpentechnik.

Ende 2015 betrug der Anteil des solar erzeugten Stroms am Stromverbrauch der LBB-Liegenschaften ohne Hochschulen circa 3 Prozent. Dabei wurde der gesamte erzeugte Strom, einschließlich des eigenen und dem durch Dritte in das öffentliche Netz eingespeisten Anteils, berücksichtigt. Der Anteil der erzeugten Wärme aus Biomasse am Wärmeverbrauch der LBB-Liegenschaften belief sich auf über 7 Prozent.

2.3.1 Fotovoltaik

Ursprünglich hat der Landesbetrieb LBB seine landeseigenen Dachflächen durch Fremdinvestoren mit Fotovoltaikanlagen belegen lassen. Dabei stellte der Landesbetrieb LBB seine Dachflächen gegen eine Pacht einem privaten Investor zur Verfügung, der in die Fotovoltaikanlage investierte und dafür die Einspeisevergütung erhielt.

Um den Eigenverbrauch von solar erzeugtem Strom zu fördern, wurden mit der Novellierung des EEG in 2009 die Vergütungssätze für die Erzeugung von Solarstrom deutlich reduziert. Ziel der stetigen Reduzierung der Vergütungssätze war es, den Fördermechanismus so weiterzuentwickeln, dass eine wirtschaftliche Integration der Erneuerbaren Energien in den Energiemarkt ermöglicht wird. Da der Vergütungssatz bei einer Einspeisung in das öffentliche Netz deutlich unter dem Strombezugspreis liegt, ist es heute wirtschaftlicher den erzeugten Solarstrom direkt in der Liegenschaft zu verbrauchen.

Seit Einführung dieser Eigenverbrauchsregulierung, errichtet und betreibt der Landesbetrieb LBB deshalb die Fotovoltaikanlagen auf den landeseigenen Gebäuden in eigener Verantwortung.

Gerade aufgrund der geringen Anlagengrößen und der nutzungsbedingten Gleichzeitigkeit kann der solar erzeugte Strom in der Regel zu 80 bis 100 Prozent direkt in unseren Liegenschaften verbraucht werden. Den solar erzeugten Strom stellt der Landesbetrieb LBB dem Mieter in Höhe der eingesparten Fremdstromkosten in Rechnung. So wird die Investition der Fotovoltaikanlage refinanziert.

Da die Errichtung einer Fotovoltaikanlage zur Verbesserung der Energiebilanz zudem in die ENEV Berechnungen (ENEV 2014) einbezogen werden kann, prüft der Landesbetrieb LBB die wirtschaftliche Einsatzmöglichkeit von eigenfinanzierten Fotovoltaikanlagen für den Neubaubereich. Dies wurde in seiner internen Richtlinie "Energieeffizientes Bauen und Sanieren" grundsätzlich festgeschrieben.

Die Integration von Fotovoltaikanlagen hat durch die Novellierung der ENEV eine enorme Aufwertung erfahren und ist für den Landesbetrieb Liegenschafts- und Baubetreuung die kostengünstigste Möglichkeit um diese Anforderungen zu erfüllen.

Nachfolgende Übersicht (Tab. 16) zeigt die Anzahl, die installierte Leistung und die Modulfläche aller bis Ende 2015 in Betrieb genommenen Fotovoltaikanlagen. Die erzeugten Strommengen pro Jahr sind Tabelle 17 zu entnehmen.

	Anzahl der	Installierte Leistung	Installierte Modulfläche
	Anlagen	kW_{peak}	m²
LBB	44	2.167	18.428
Hochschulen	14	1.034	9.516
Summe	58	3.201	27.944

 Tab. 16
 Fotovoltaikanlagen in LBB-Liegenschaften

	Stromertrag Fotovoltaik MWh/a											
2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
39	54	624	1.261	1.464	1.564	1.749	2.364	2.775	2.857	2.895	2.973	3.088

 Tab. 17
 Stromertrag Fotovoltaik in LBB-Liegenschaften

Abb. 15 Fotovoltaikanlagen auf dem Pädagogischen Landesinstitut in Speyer

Elektromobilität als integraler Bestandteil moderner Landesimmobilien

Eine klimafreundliche Mobilität setzt voraus, dass der für den Betrieb der Elektrofahrzeuge erforderliche Strom aus erneuerbaren Energien erzeugt wird. Überall dort, wo der Aufbau einer Ladeinfrastruktur geplant ist, wird deshalb geprüft, inwieweit die Versorgungsmöglichkeit mittels einer Fotovoltaik- oder BHKW-Anlage gegeben ist. Durch den Einsatz der Elektromobilität werden nicht nur die Wirtschaftlichkeit dieser Anlagen durch die Erhöhung des Eigenverbrauches verbessert, sondern gleichzeitig die hauseigenen Netze entlastet.

Mit dem erfolgreich umgesetzten Pilotprojekt Elektromobilität hat der Landesbetrieb Liegenschafts- und Baubetreuung die Alltagstauglichkeit der eingesetzten Elektrofahrzeuge in den Niederlassungen festgestellt und in seinem Erfahrungsbericht vom Juni 2016 dokumentiert.

Zwischenzeitlich wurden alle LBB-Niederlassungen mit der erforderlichen Ladeinfrastruktur nachgerüstet.

Die Entwicklung effizienterer Batteriesysteme führt künftig zu steigenden Reichweiten, so dass für moderne Fahrzeuge tatsächliche Reichweiten von 200 km bis 300 km Standard sind. Die Beschränkung für weiter entlegene Liegenschaften, kann wahrscheinlich mit der nächsten Fahrzeug-Generation vollständig aufgehoben werden.

Mit seinem Engagement übernimmt der LBB eine besondere Vorbildfunktion für die öffentliche Verwaltung und für die vielen gewerblichen Fahrzeugflotten, deren Betreiber sukzessiv zum Aufbau eines Ladenetzwerkes beitragen können. Fotovoltaikanlagen und Elektromobilität sind eine konsequente Ergänzung zur Erhöhung des Eigenverbrauchs und der Wirtschaftlichkeit unserer solaren Stromerzeugungsanlagen.

Abb. 16 Solarcarport in Landau

2.3.2 Solarthermie

Solarkollektoren erwärmen üblicherweise ein Sole-Wasser-Gemisch, das den Kollektor durchströmt und anschließend diese Wärme in einen Speicher für Warmwasser und/oder zur Beheizung eines Gebäudes überträgt. Im Wohnungsbau kann somit in den Sommermonaten der gesamte Warmwasserbedarf gedeckt werden. Betrachtet man das ganze Jahr, können circa 50 bis 60 Prozent der Energie zur Warmwasserbereitung eingespart werden. Bei Nichtwohngebäuden ist der Einsatz nur in Liegenschaften mit hohem Wasserverbrauch wirtschaftlich, etwa in Mensen oder Sporthallen von Hochschulen oder JVA's bzw. in großen Polizeiliegenschaften.

Bis 2015 waren folgende Solarthermieanlagen in LBB-Liegenschaften installiert (Tab. 18):

	Anzahl der	Kollektorfläche
	Anlagen	m²
LBB	10	340
Hochschulen	9	541
Summe	19	881

Tab. 18 Solarthermie in LBB-Liegenschaften

Abb. 17 Solarthermieanlage Justizvollzugsanstalt Zweibrücken

2.3.3 Erdwärme

Die Nutzung von Erdwärme erfolgt in LBB-Liegenschaften in der Regel über Erdsonden, die bis zu einer Tiefe von circa 150 Metern senkrecht gebohrt werden. Mittels einer zirkulierenden Flüssigkeit entziehen sie dem Erdreich entsprechend der Jahreszeit Wärme oder Kälte und machen sie für das Gebäude nutzbar. Dies geschieht in den meisten Fällen über eine Wärmepumpe, die im Winter und – je nach Typ auch im Sommer – die vom Erdreich gelieferten Temperaturen zu Heiz- oder zu Kühlzwecken nutzbar macht.

Die nachfolgende Übersicht zeigt die bis 2015 errichteten Anlagen.

	Erdsonden Anzahl und		
Liegenschaft	Tiefe	Wärmepumpe Leistung	Wärmepumpe Eigenschaft
	1 x 50 m		
FAWF Trippstadt	1 x 80 m	1 x 8 KW	aktiv Heizen, passiv Kühlen
		1 x 55,6 KW	
DLR Mosel Bernkastel - Kues	16 x 110 m	1x 39,6 KW	aktiv Heizen, passiv Kühlen
Polizeiinspektion			
Ludwigshafen - Oppau	8 x 99 m	1 x 32 KW	aktiv Heizen, passiv Kühlen
Heinrich Heine Gymnasium			Vorwärmung,
Kaiserslautern	1 x 100 m		Vorkühlung der Luft
Uni Koblenz-Landau, Laborgeb. M			
Standort Koblenz	15 x 150 m	2 x 55 KW, 2 x 50 KW	aktiv Heizen, aktiv Kühlen
		2 x 21 KW Tiefkühl,	aktiv Heizen,
Wirtschaftsgebäude	3 x 130 m	3 x 96 kW Kühlraum,	Trinkwassererwärmung,
JVA Wittlich	17 x 110 m	2 x 108 KW Wärme/WW	Tiefkühl- und Kühlräume

Tab. 19 Erdsonden in LBB-Liegenschaften

2.3.4 Biomasse

Bei Biomasse-Heizungen dienen statt der Energieträger Gas oder Öl sogenannte Pellets oder Hackschnitzel als Brennstoff. Diese entstehen aus Abfallprodukten der Holzindustrie, wobei Pellets aus Sägemehl gepresst werden und einer Normung unterliegen. Die Technik dieser Heizungen ist mittlerweile ausgereift und wird von einer Vielzahl von Herstellern auf dem Markt angeboten. Dabei ist der Bedienungs- und Regelungskomfort mit einer konventionellen Heizung vergleichbar. Nachfolgender Übersicht (Tab. 20) sind Anzahl und Gesamtleistung der bis 2015 in Betrieb genommenen Pellets- oder Hackschnitzelanlagen zu entnehmen.

	Anzahl der Anlagen	Installierte Leistung
LBB + HS	26	5.253

Tab. 20 Biomasseanlagen in LBB-Liegenschaften

Die nachfolgende Grafik (Abb. 17) zeigt die installierte Leistung der Biomasseanlagen in LBB Liegenschaften und die erzeugte Wärmemenge. In 2015 wurden die ersten großen Anlagen im Hochschulbereich an den Standorten Landau (Uni Koblenz-Landau) und Trier Schneidershof (HS Trier) in Betrieb genommen.

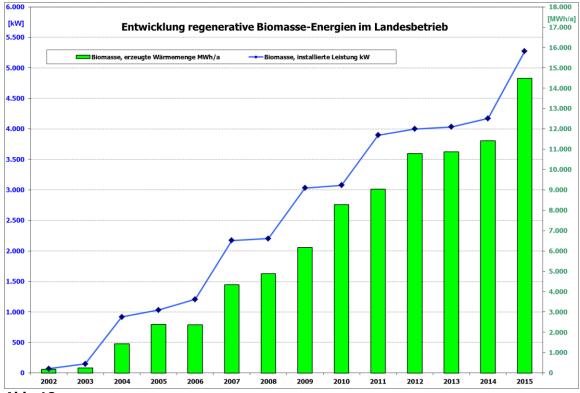


Abb. 18

Abb. 19 Pellets

Abb. 20 Holzhackschnitzel

2.3.5 Blockheizkraftwerke (BHKW)

Auch der Anteil der über Kraft-Wärme-Kopplung erzeugten Energie wird ständig ausgebaut. Blockheizkraftwerke gehören zu den Kraft-Wärme-Kopplungs-Systemen (KWK), die wie ein Kraftwerk Strom und Wärme erzeugen. Dabei treibt ein Verbrennungsmotor, der meistens mit Gas betrieben wird, einen Generator zur Stromerzeugung an. Wärmetauscher wandeln die entstehende Abwärme des Motors in zum Heizen nutzbare Energie um. Die gemeinsame Erzeugung von Wärme und Strom vor Ort ist effizienter und damit umweltfreundlicher. Verglichen mit einem Ölkessel zur Beheizung und einem Kohlekraftwerk zur Stromerzeugung können damit beispielsweise circa 35 Prozent des Brennstoffbedarfs und circa 66 Prozent der CO₂-Emissionen eingespart bzw. vermieden werden – jeweils bezogen auf den Primärenergieeinsatz [Quelle: ASUE, zit. nach Buderus-Handbuch der Heizungstechnik].

Nachfolgende Übersicht (Tab. 21) zeigt die elektrische und thermische Leistung aller bis Ende 2015 in Betrieb genommenen Blockheizkraftwerke. In Liegenschaften, in denen der Einsatz dieser Technologie sinnvoll ist (stetige übers Jahr etwa gleichmäßig hohe Verbräuche, die zu langen Laufzeiten der BHKWs führen) wurde der Anteil seit 2004 konsequent weiter ausgebaut. Dies betrifft in erster Linie Justizvollzugsanstalten und Polizeiliegenschaften. Außerdem sind in Tab. 22 die erzeugten Strom- und Wärmemengen der BHKWs dargestellt.

	Anzahl der Anlagen	Leistung elektr. kW _{el}	Wärmeleistung kW _{therm}
LBB+HS	37	1.535	2.704

Tab. 21 Blockheizkraftwerke in LBB-Liegenschaften

	2002	2008	2009	2010	2011	2012	2013	2014	2015
Erzeugte Wärme									
von BHKWs (kWh)	400.902	7.096.360	7.996.700	9.537.600	9.589.000	10.096.933	10.207.058	14.236.100	14.438.100
Erzeugter Strom									
von BHKWs (kWh)	190.984	3.663.409	4.487.769	5.112.100	5.139.700	5.127.439	5.167.774	7.778.400	7.882.900

Tab. 22 Blockheizkraftwerke: erzeugte Strom- und Wärmemengen

Die nachfolgende Grafik (Abb. 21) zeigt die installierten BHKW-Leistungen, die jährlichen, erzeugten Wärme- und Strommengen und die voraussichtliche Entwicklung dieser Größen.

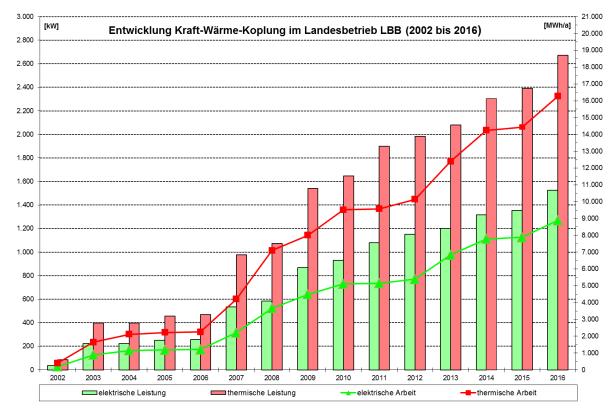


Abb. 21

Repowering von Blockheizkraftwerken

Durch das Ersetzen oder Grundüberholen von vorhandenen Blockheizkraftwerken können diese Anlagen nochmals nach dem Kraft-Wärme-Kopplungsgesetz gefördert werden. Bei Anlagen bis 50 Kilowatt (elektrische Leistung) ist der übliche Förderzeitraum 10 Jahre (= Abschreibungszeitraum). Größere Anlagen werden bis zu 30.000 Vollbenutzungsstunden gefördert.

Planungen im Landesbetrieb LBB sind zu folgenden Projekten veranlasst:

- JVA Rohrbach (187 Kilowatt (elektrische Leistung); Baujahr 2002), neu: 1 x 140 Kilowatt (elektrische Leistung) und 1 x 70 Kilowatt (elektrische Leistung)
- Bereitschaftspolizei Wittlich (112 Kilowatt (elektrische Leistung), Baujahr 2007),
 neu: 2 x 50 Kilowatt (elektrische Leistung)

Die anderen BHKWs werden sukzessive in die Planung und Umsetzung aufgenommen.

2.4 Optimierter Gebäudebetrieb

Ergänzend zur Entwicklung und Anwendung vorbildlicher LBB-Energiestandards beim Bauen und Sanieren landeseigener Liegenschaften steht die Optimierung des Betriebs gebäudetechnischer Anlagen gleichermaßen im Fokus der Klimaschutzmaßnahmen.

Der Landesbetrieb LBB konzentriert sich dabei insbesondere auf Liegenschaften mit auffällig hohen Energieverbräuchen. Im ersten Schritt werden bei einem Ortstermin die Gebäudehülle und die technischen Gebäudeanlagen überprüft. Dabei werden moderne Messverfahren wie z.B. Thermografie oder Ultraschall zur Wärmeverbrauchsanalyse eingesetzt. Anschließend werden Sanierungs-/Optimierungskonzepte erarbeitet. Überwiegend im Rahmen der Bauunterhaltung werden z.B. Fassaden mit Wärmedämmsystemen versehen, hydraulische Abgleiche und Leistungsanpassungen von Heizungsanlagen und Optimierungen der Regelungs- und Steuerungstechniken durchgeführt.

Anders ist es bei Investitionen, die eine übliche Bauunterhaltungspflicht deutlich übertreffen. Hierzu zählt etwa die wirtschaftliche Modernisierung einer noch intakten technischen Anlage, die Umstellung der Heizung auf einen regenerativen Energieträger oder der Einbau einer Kraftwärmekopplung bzw. einer neuen Gebäudeleittechnik. In solchen Fällen werden Vereinbarungen über ein "internes" Contracting mit den betreffenden hausverwaltenden Dienststellen mit einer Laufzeit von einigen Jahren getroffen. Im Landesbetrieb LBB wird seit circa 12 Jahren Energieeinspar-Contracting angewendet. Dabei setzt der Landesbetrieb LBB bisher überwiegend auf die Eigenfinanzierung von Energie-Einsparmaßnahmen (Intracting). Hierbei werden die Kosten der investiven Anteile, die sich als Mehrkosten zum allgemeinen Bauunterhalt ergeben, aus den erzielten Energie-Einsparungen refinanziert. In diesen Vereinbarungen werden die Energie-Einsparmaßnahmen, die Höhe der Einsparungen, die Aufteilung dieser Einsparungen zwischen dem Landesbetrieb LBB und dem Nutzer sowie die Laufzeit der Vereinbarung verbindlich festgelegt.

Folgende Intractingprojekte werden nach diesen Maßgaben durchgeführt:

<u>Justizvollzugsanstalten</u>

Die erste und bisher umfangreichste Energieeinspar-Intracting-Verwaltungsvereinbarung wurde im Jahr 2005 mit dem Justizministerium abgeschlossen. Sie umfasste die Liegenschaften der Justizvollzugsanstalten und initiierte Maßnahmen auf dem Gebiet der Wärme-, Strom- und Wassereinsparung. Die jährlichen Betriebskosten konnten um rund 23 Prozent reduziert werden.

Steckbrief der Intracting Maßnahme

Start Hauptleistungsphase	Januar 2006
Laufzeit	72 Monate, bis Dezember 2011
Investitionskosten in technische	circa 811.000 Euro
Anlagen und Geräte	zuzüglich Ingenieursleistungen und Planungskosten
garantierte jährliche	280.000 Euro
Betriebskosteneinsparung	wurde jedes Jahr übertroffen

Amt für soziale Angelegenheiten in Landau

Selbst bei kleinen Vorhaben kann sich ein Energieeinspar-Contracting rentieren. Der Schwerpunkt liegt im Bereich der Heizung und Warmwasserbereitung. Die garantierten Einsparungen wurden in jedem Jahr deutlich übertroffen. Der Überschuss ging zu gleichen Teilen an die Vertragsparteien.

Steckbrief der Intracting Maßnahme

Start Hauptleistungsphase	Januar 2009
Laufzeit	84 Monate bis Januar 2016
Investitionskosten in technische	circa 44.000 Euro
Anlagen und Geräte	zuzüglich Ingenieursleistungen und Planungskosten
garantierte jährliche	22.450 Euro (Strom und Wärme zusammengerechnet)
Betriebskosteneinsparung	in jedem Jahr deutlich übertroffen

Polizeipräsidium in Mainz

Schwerpunkt dieser Maßnahme war die Modernisierung der Lüftungsanlagen. Die prognostizierten Stromeinsparungen wurden sicher realisiert. Im Bereich Wärme wurden zunächst nur circa 80 Prozent und nach einer Nachjustierung der Anlagen über 100 Prozent der prognostizierten Einsparungen in den Jahren 2014 und 2015 erreicht.

Steckbrief der Intracting Maßnahme

Start Hauptleistungsphase	April 2011
Laufzeit	72 Monate, bis April 2017
Investitionskosten in technische	circa 251.000 Euro
Anlagen und Geräte	zuzüglich Ingenieursleistungen und Planungskosten
garantierte jährliche	103.000 Euro (Strom und Wärme
Betriebskosteneinsparung	zusammengerechnet)

Landesschule für Gehörlose und Schwerhörige in Neuwied

Schwerpunkt dieser Maßnahme ist die Modernisierung der Heizungsanlage und der Einbau eines Blockheizkraftwerkes (BHKW). Mit jährlichen Einsparungen bei den Energiekosten von circa 35.000 Euro wird gerechnet.

Steckbrief der Intracting Maßnahme

Start Hauptleistungsphase	2013
Laufzeit	15 Jahre, bis 2028
Investitionskosten in technische	circa 156.000 Euro
Anlagen und Geräte	inklusiv Ingenieursleistungen und Planungskosten
garantierte jährliche	35.000 Euro
Betriebskosteneinsparung	

Amtsgericht in Neuwied

Bei diesem energetischen Sanierungsprojekt wurden die bestehende Lüftungsanlage und die Heizungsanlage optimiert. In einem Anbau aus den 70er-Jahren wurden dezentrale Lüftungsgeräte mit Wärmerückgewinnung in Büroräumen eingebaut und Fenster erneuert. Die Fassade wurde als Wärmedämmverbundsystem ausgeführt und das Dach wärmetechnisch saniert. Da die Sanierung der Gebäudehülle kostenintensiv war, können die Investitionen nicht vollständig aus den Energieeinsparungen refinanziert werden. Aus diesem Grund wurde zwischen Landesbetrieb LBB und Justizministerium ein einmaliger Baukostenzuschuss von 150.000 Euro vereinbart.

Da die Heizlast des Gebäudes deutlich reduziert wurde, konnte 2017 bei der Erneuerung der Heizungsanlage ein deutlich kleinerer Heizungskessel eingebaut werden. Weiterer Vorteile dieser Maßnahme sind die Steigerung der Behaglichkeit und die Verbesserung der Arbeitsbedingungen.

Steckbrief der Intracting Maßnahme

Start Hauptleistungsphase	2014
Laufzeit	2 Jahre, bis 2015
Zuschuss zu den Investitionskosten in	circa 150.000 Euro
technische Anlagen und Geräte	
garantierte jährliche	durchschnittlich circa 9.000 Euro
Betriebskosteneinsparung	

Weitere Projekte beim Landesbetrieb LBB, die dem Modell des Energieeinspar-Contractings bzw. Intractings entsprechen, sind:

- Einbau eines Holzhackschnitzel-Heizkessels und die Sanierung der Heizzentrale in der JVA Diez
- Einbau eines Holzhackschnitzel-Heizkessels in der Heizzentrale des DLR Neustadt
- zahlreiche Projekte mit Blockheizkraftwerken

Mittlerweile haben sich für kleinere Maßnahmen wie Pellets-Kessel und Blockheizkraftwerke feste Verwaltungsvereinbarungen etabliert bzw. wurden dafür mit den zuständigen Ressorts Rahmenvereinbarungen geschlossen. Beispielhaft ist hier die Rahmenvereinbarung mit dem Umweltministerium über den Ersatz von Ölkesseln durch Pellets-Kessel in Forstämtern zu nennen. Detailliertere Informationen zum Betrieb von Blockheizkraftwerken sowie deren technischen Eigenschaften finden sich in Kapitel 2.3.5.

Insgesamt gab es beim Landesbetrieb LBB bisher 44 Intracting-Projekte mit einem Investitionsvolumen von circa 9,2 Mio. Euro, circa 1,8 Mio. Euro pro Jahr Energiekosteneinsparung und circa 4,9 Mio. Kilogramm pro Jahr CO_2 -Einsparung.

Folgende Contractingprojekte werden nach den Maßgaben des Intractings durchgeführt:

Externes Energieeinspar-Contracting kam in der Hauptmensa der Universität Mainz zum Einsatz. Bei diesem Projekt wurde ein externer Contractor mittels Ausschreibung gesucht, der für die Finanzierung und die bauliche Umsetzung der Energiespar-Maßnahmen sowie für die Einspargarantie verantwortlich ist. Der Landesbetrieb LBB war bei diesem Projekt für die Ausschreibung, Vergabe und die Ingenieurbetreuung der Leistungen verantwortlich.

Mensa der Universität Mainz (Contractor Hochtief):

Der Schwerpunkt dieses Projektes lag in der Optimierung der Heizungs-, Lüftungs- und Kältetechnik sowie der Dampfversorgung für die Küche.

Steckbrief der Contracting Maßnahme

Start Hauptleistungsphase	2005
Laufzeit	5 Jahre, bis 2010
Investitionskosten in technische	circa 896.000 Euro,
Anlagen und Geräte	inklusiv Ingenieursleistungen und Planungskosten
jährliche Einsparung Energiekosten	circa 262.000 Euro

Der Landesbetrieb LBB bewertet die Anwendung des Energiespar-Contracting-Modells positiv. Dies gilt insbesondere für Intracting-Vereinbarungen, gekoppelt an notwendige Sanierungsmaßnahmen. Als investive Maßnahmen werden die Intracting-Projekte im Investitionsplan des Landesbetriebes LBB abgebildet. Die finanzielle Transparenz dieser Modelle entspricht den wirtschaftlichen Prinzipien des Landesbetriebs.

2.5 Vertragsmanagement

Um bei den Verbrauchsmedien Strom und Wärme Einsparungen zu erzielen, wird seit 2002 der Strombezug in regelmäßigem Turnus öffentlich ausgeschrieben. Ab dem Jahr 2006 wurde auch für die Energieträger Erdgas und Biomasse (Holzhackschnitzel und Holzpellets) so verfahren. Im Jahr 2012 wurde die Energiebeschaffung für nahezu alle Liegenschaften durch zentrale öffentliche Ausschreibungen organisiert.

Im Jahr 2005 begann der Landesbetrieb LBB, die Rechnungen der Versorger für die Medien Strom, Gas, Fernwärme und Holz zentral in der Gruppe Energiemanagement (EM) zu prüfen. Inzwischen kontrolliert die Gruppe EM alle Energierechnungen. Im Anschluss werden die geprüften Rechnungen zwecks Zahlungsanweisung an die jeweiligen Hausverwaltungen versandt. Der Auftraggeber zur Energielieferung ist der Landesbetrieb LBB.

Ab dem Jahr 2007 werden auch die Hochschulen und Universitäten im gleichen Maße mit in den Ausschreibungen und Rechnungsprüfungen berücksichtigt. Ausgenommen hiervon sind lediglich die Universitäten Mainz, Kaiserlautern und Trier, da diese Universitäten die Ausschreibung und Rechnungsprüfung bereits in eigener Regie durchführen.

Bei der erstmaligen Ausschreibung konnten Einsparungen von bis zu 15 Prozent erreicht werden. In den Wiederholungsauschreibungen wurden u. a. durch Optimierungsmaßnahmen in der Beschaffung günstige Marktpreise erreicht. Die Energiepreise werden dadurch transparent (Energie, Netz, Steuern und Abgaben) und vergleichbar. Einsparpotenziale in Bezug auf optimale Netzentgelte werden erkennbar und nutzbar, z. B. hinsichtlich einer Lastgangmessung im Stromund Gasbereich.

Fernwärme

Der Landesbetrieb LBB bearbeitet systematisch die vorhandenen Fernwärmeverträge im Hinblick auf mögliche Einsparpotenziale durch mögliche Anpassungen von Vertragsleistungen und Preisen. Im Fall von Neuanschlüssen an Fernwärme werden diese von der Gruppe EM mittels Wirtschaftlichkeitsuntersuchungen und Preisvergleichen geprüft.

Aktuelle Beispiele hierfür sind:

- Hochschule Kaiserslautern, 2 Gebäude (2016)
- Forstamt, ADD-Reisekostenstelle und Vermessungs- und Katasteramt in Birkenfeld (Ende 2015)
- Finanzamt, Amtsgericht und DLR in Simmern (2016)

Verhandlungen sind derzeit in Kaiserslautern im Gange.

Stromausschreibung

Mit der Stromausschreibung für die Lieferjahre 2016, 2017 und 2018 wurde Ökostrom für etwa 1.500 Lieferstellen in einer Gesamtmenge von circa 138 Gigawattstunden pro Jahr ausgeschrieben. Die jährliche Einsparung im CO2-Äquivalent durch den Bezug von Ökostrom nach Angaben der Stromversorger beträgt etwa 80.000 Tonnen (577 Gramm pro Kilowattstunde CO2). Durch den derzeitig günstigen Börsenpreis von Strom werden im Vergleich zu den Vorjahren circa 3,5 Mio. Euro pro Jahr eingespart, was einer Einsparung beim reinen Strompreis von 40 Prozent entspricht.

Erdgasausschreibung

Im Jahr 2014 wurde erneut eine Ausschreibung aller Lieferstellen öffentlich (europaweit) mit Lieferbeginn 01.01.2015 ausgeschrieben. Es wurden insgesamt 311 Lieferstellen mit einer jährlichen Gasabnahme von 163 Gigawattstunden ausgeschrieben. Durch die strukturierte Beschaffung zu gehandelten Börsenpreisen (EEX Börse in Leipzig) konnten sehr günstige und markgerechte Einkaufspreise erreicht werden. Alle Kostenbestandteile werden in der Erdgasrechnung transparent aufgeführt.

Holzpellets- und Holzhackschnitzelausschreibung

Im Jahr 2016 wurde erneut eine europaweite Ausschreibung von Holzpellets und Holzhackschnitzeln durchführt. Lieferbeginn war am 01.11.2016. Insgesamt wurden 21 Liegenschaften mit einem jährlichen Pelletsbedarf von circa 1.600 Tonnen ausgeschrieben. Der Pelletspreis orientiert sich an monatlichen Preiserhebungen von Markanbietern; für diese Preiserhebungen konnten Preisnachlässe von bis zu 27 Prozent erreicht werden.

Nutzung von Lastprofilen im Strom- und Erdgasbereich

Für große Abnehmer (Strom: > 30 Kilowatt und > 30.000 Kilowattstunden pro Jahr; Erdgas: >500 Kilowatt und/oder > 1.500.000 Kilowattstunden pro Jahr) erhält der Landesbetrieb LBB die entsprechenden Messwerte (viertelstündlich bei Strom und stündlich bei Erdgas) monatlich zur Verfügung gestellt. Diese werden zur Rechnungsprüfung herangezogen. Des Weiteren werden diese Daten im Bedarfsfall weiterverwendet zur Betrachtung einer Energieeinsparung und zur Auslegung von technischen Anlagen, z.B. Heizkesseln oder BHKW.

2.6 Jahresenergiebericht und Controlling

Jahresenergiebericht

Der Landesbetrieb LBB erstellt für jedes Jahr einen Energiebericht mit Gesamtaussagen hinsichtlich des Strom-, Wärme- und Wasserverbrauchs und der damit einhergehenden Kosten und Treibhausgas-Emissionen (THG-Emissionen). Darin werden detailliert Verbräuche und Kosten der Landesliegenschaften aufgezeigt, flächenbezogene Kennwerte gebildet und mit Benchmarks abgeglichen. Der jährliche Energiebericht liefert die Grundlage zur Beurteilung und Verbesserung der energetischen Qualität der Landesgebäude.

Energiecontrolling

Im Rahmen des Konjunkturpakets II der Jahre 2009/2010 hat der Landesbetrieb LBB Energiecontrollingsysteme beschafft und diese, beginnend mit der Übernahme der Hochschulen ins wirtschaftliche Vermögen, eingeführt.

An der Universität Kaiserslautern und der Universität Trier wurden eigenständige Energiecontrollingsysteme aufgebaut. Um die Anforderungen der Universität Mainz abdecken zu können, wurde für diese Hochschule die Energiecontrolling-Software "Interwatt" der Fa. IngSoft beschafft. Sie wurde im Rechenzentrum an der Universität Mainz in Betrieb genommen. Da diese Energiecontrolling-Software internetbasiert und multiuser-fähig ist, wurden weitere Hochschulen und Liegenschaften anderer Ressorts für die automatisierte Erfassung der Energieverbrauchsdaten auch auf diese Software aufgeschaltet.

Investiert wurde in diesem Projekt auch in den Ausbau der Energie- und Wasserzähler und in die Hardware zum Speichern und Übertragen der Energiedaten. Ergänzt durch einen lokalen Kommunikationsbus entstanden so Zählerfernauslesenetze, über die automatisiert alle 15 Minuten Zählerstände einer Liegenschaft erfasst werden.

In der ersten Ausbaustufe 2011 wurden die Hochschulen und circa 40 weitere Liegenschaften mit einem hohen Energieverbrauch und Liegenschaften, in denen Blockheizkraftwerke betrieben werden, mit fernausgelesenen Zählern in das zentrale, internetbasierte Energiecontrolling integriert.

Bei Neubauprojekten, z.B. Hochschule Kaiserslautern am Standort Kammgarn, und bei Projekten mit dem Ziel einer besonders hohen Energieeffizienz, z.B. Passivhaus-Standard, werden heute die Belange des Energiecontrollings von Anfang an berücksichtigt.

In Liegenschaften, in denen der bauliche Aufwand für eine automatisierte Zähler-Fernauslesung in keiner wirtschaftlichen Relation zu den Energiekosten steht, kann eine händische Zählerablesung sinnvoll sein. Die Erfassung der Verbrauchsdaten erfolgt in diesem Fall mit Hilfe von Ableseformularen, die aus der Energiecontrolling-Software heraus erzeugt und von dieser per E-Mail der ablesenden Person zugestellt werden. Die erfassten Verbrauchsdaten werden von der ablesenden Person über ein Internet-Portal eingegeben und an die Energiecontrolling-Software gesendet. Dies geschieht in der Regel zum 1. eines jeden Monats. Diese Systematik wurde mit Stand Juli 2017 in 45 Finanzämtern, 56 Gerichten, 7 JVA's, circa 58 polizeilichen Liegenschaften

und circa 15 weiteren LBB-Liegenschaften eingeführt. Weitere Liegenschaften befinden sich in der Umsetzung.

Parallel zum baulichen Ausbau der Liegenschaften werden die Energie-Verbrauchsdaten der aufgeschalteten Liegenschaften systematisch analysiert und entsprechend den Erkenntnissen bauliche und organisatorische Energiesparmaßnahmen initiiert. Durch die zeitnahe Darstellung der Energieverbräuche in anschaulichen Grafiken (Monitoring) und die Auswertung der erfassten Daten (Controlling) werden unwirtschaftliche Betriebszustände in den betreffenden Gebäuden erkannt und behoben.

Der Landesbetrieb LBB setzt bei der Verbrauchsoptimierung durch eine entsprechende Bedienung und Einstellung der Anlagen auf die Zusammenarbeit mit den Liegenschaftsnutzern. Außerdem bietet das Energiemanagement des Landesbetriebs LBB den hausverwaltenden Dienststellen Unterstützung bei der Auswertung der Energie-Verbrauchsdaten an.

3. Projektbeispiele

Beispielhaft sind nachfolgend einige richtungsweisende Projekte des Landesbetriebs LBB aufgeführt, die durch niedrige Betriebskosten der Vorbildfunktion der öffentlichen Hand gerecht werden.

Erweiterung Hochschule Kaiserlautern am Standort Kammgarn

Der Standort befindet sich auf dem Areal der ehemaligen Kammgarnspinnerei, deren Verwaltung, angrenzende Hallen und Kraftwerk als Denkmalzone unter Schutz stehen. Das Areal ist landschaftlich geprägt durch hohe Sandstein-Abbruchkanten des historischen Kröckel' schen Steinbruchs nördlich und südlich des Geländes.

- Gebäude E

- Sanierung des Bestandsgebäudes "Wollmagazin"
- Bibliothek und Rechenzentrum
- Nettogrundfläche: 5.366 Quadratmeter

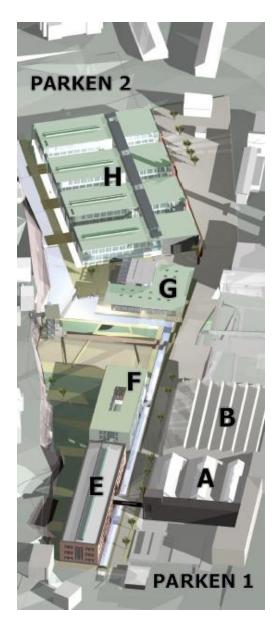
- Gebäude F

- Neubau, Verwaltung und Hochschulleitung
- Nettogrundfläche: 4.602 Quadratmeter
- Fertigstellung 2016
- Gebäude E und F werden gemeinsam durch eine Wärmepumpe mit Wasser aus der Lauter (Kanal in der Schönstraße) beheizt und gekühlt
- Beide Gebäude wurden im Rahmen des Projekts "H.ausgezeichnet", der Klimaschutzplakette für energiesparendes Bauen und Sanieren der Energieagentur Rheinland-Pfalz, ausgezeichnet

Abb. 22 Hochschule Kaiserslautern (HS KL), Kammgarn, Gebäude E, Gebäude A Bestand Foto: Thomas Brenner, Kaiserslautern

Abb. 23 HS KL, Kammgarn, Gebäude F

Foto: Thomas Brenner, Kaiserslautern


Abb. 24

Lageplan HS KL Standort Kammgarn

Abb. 25

HS KL, Kammgarn, Gebäude F, Innenhof Foto: Thomas Brenner

Institut für Anthropologie an der Universität Mainz

Energiestandard: Net-Zero-Energy-Building

Fertigstellung: 2013

Nettogrundfläche: circa 1.650 Quadratmeter

Massivbau mit hochwärmegedämmter Gebäudehülle und hoher Luftdichtigkeit

Lüftungsanlage mit hocheffizienter Wärmerückgewinnung für das gesamte Gebäude

Stromsparkonzept, z. B. präsenzabhängige Steuerung der Haustechnik

Fotovoltaikanlage mit einem Jahresertrag von circa 10.500 Kilowattstunden

Wärmeversorgung: Fernwärme Mainz

In der engeren Wahl für den Architekturpreis 2013 der Architektenkammer Rheinland-Pfalz

Abb. 26 Foto: Rüdiger Mosler, Nochern

Institut für Sozialwissenschaften, Georg-Forster-Gebäude an der Universität Mainz

- Fertigstellung: April 2013

- Hauptnutzfläche: 10.575 Quadratmeter

- Die Vorgaben der Energieeinsparverordnung 2009 werden um 34 Prozent übertroffen
- Das Energiekonzept sieht Kühlung im Sommer und Beheizung im Winter über eine Betonkernaktivierung vor
- Ein Erdkanal unter der Bodenplatte dient der Vorkonditionierung der Außenluft und reduziert somit den Energieverbrauch
- Regenwasser wird in einer außenliegenden Zisterne gesammelt und als Brauchwasser genutzt

Abb. 27 Foto: Kühnl + Schmidt Architekten AG, Karlsruhe

Neubau Ausbildungszentrum für Forstwirte Hinterweidenthal

- Fertigstellung: 2012

- Nettogrundfläche: circa 402,44 Quadratmeter

- Massive Holzbauelemente

Hochwärmegedämmte Gebäudehülle

(Pultdach mit circa 400 Millimeter Einblaszellulose, circa 280 Millimeter

Wärmedämmverbundsystem (WDVS) mit Wärmeleitgruppe (WLG) 035

- Lüftungsanlage mit hocheffizienter Wärmerückgewinnung

- Wärmeversorgung: vorh. Lüftungsanlage in der Grundauslastung und zusätzliche elektronisch geregelte Wandkonvektoren für die individuelle Steuerung

- Fotovoltaikanlage mit circa 30 Kilowatt (peak) Gesamtleistung

Abb. 28

Kommunikationszentrum Umwelt-Campus Birkenfeld

Energiestandard: Niedrigstenergiegebäude

- Fertigstellung: 2012
- Nettogrundfläche: circa 1.532 Quadratmeter
- Mischbauweise (Holzbau/Massivbau)
- Hochwärmegedämmte Gebäudehülle
- Lüftungsanlage mit hocheffizienter Wärmerückgewinnung für das gesamte Gebäude
- Wärmeversorgung: Nahwärmeanschluss (Biomassekessel)

Abb. 29 Foto: Jörg Heieck, Kaiserslautern

Felix-Klein-Zentrum (Institut für Mathematik) an der TU Kaiserslautern Energiestandard: zertifiziertes Passivhaus

- Fertigstellung: 2011

Nettogrundfläche: circa 754 Quadratmeter

- Massivbauweise

- Hochwärmegedämmte Gebäudehülle (Gefälledach, WDVS, Dreifachverglasung)
- Lüftungsanlage mit hocheffizienter Wärmerückgewinnung für das gesamte Gebäude
- Wärmeversorgung: Nahwärmeanschluss an Heizzentrale der TU

Abb. 30

Internatsgebäude am Heinrich-Heine-Gymnasium Kaiserslautern

Energiestandard: zertifiziertes Passivhaus (2.Bauabschnitt)

- Fertigstellung: 2011
- Nettogrundfläche: circa 1.570 Quadratmeter
- Wände und Decken: Massivbauweise, Dach: Holzkonstruktion
- hochwärmegedämmte Gebäudehülle (WDVS, Dreifachverglasung)
- Lüftungsanlage mit hocheffizienter Wärmerückgewinnung für das gesamte Gebäude
- Erdsonde zur Vortemperierung der Frischluft für die Lüftungsanlage
- Wärmeversorgung: Nahwärmeanschluss an Heizzentrale der Schule

Abb. 31

Dienstleistungszentrum Ländlicher Raum Mosel in Bernkastel-Kues Energiestandard: Niedrigstenergiegebäude

- Fertigstellung: 2010
- Nettogrundfläche: circa 1.800 Quadratmeter (beheizt)
- Massivbauweise, hochwärmegedämmte Gebäudehülle (WDVS)
- Wärmeversorgung: 56- und 40-Kilowatt-Wärmepumpe, 16 vertikale Erdsonden mit
 110 Metern Tiefe, Betonkerntemperierung der Geschossdecken

Abb. 32

Polizei-Inspektion Ludwigshafen-Oppau

Energiestandard: Niedrigstenergiegebäude

- Fertigstellung: 2010
- Nettogrundfläche: circa 1.031 Quadratmeter
- Massivbauweise, Hochwärmegedämmte Gebäudehülle (WDVS, Dreifachverglasung)
- Lüftungsanlage mit hocheffizienter Wärmerückgewinnung für das gesamte Gebäude
- Wärmeversorgung: 32-Kilowatt-Wärmepumpe, 8 Erdsonden, 24-Quadratmeter-Solarthermieanlage, Pufferspeicher, Betonkerntemperierung der Geschossdecken

Abb. 33 Foto: Rüdiger Mosler, Nochern

LBB-Bauleitung Campus Universität Mainz

Energiestandard: Niedrigstenergiegebäude

- Fertigstellung: 2009
- Nettogrundfläche: circa 410 Quadratmeter
- Massivbauweise
- Hochwärmegedämmte Gebäudehülle (Gefälledämmung, WDVS, Dreifachverglasung)
- Lüftungsanlage mit hocheffizienter Wärmerückgewinnung für das gesamte Gebäude
- Wärmeversorgung: Anschluss an Fernwärmenetz der Universität
- CO₂-neutrale Primärenergiebilanz aufgrund der Fotovoltaikanlage auf dem Flachdach

Abb. 34

Anbau Finanzamt Kaiserslautern

Energiestandard: zertifiziertes Passivhaus

- Fertigstellung: 2008

- Nettogrundfläche: circa 950 Quadratmeter

- Nutzung: Bürogebäude

- Massivbauweise (Kalksandstein, Stahlbeton)

- hochwärmegedämmte Gebäudehülle (WDVS, Dreifachverglasung mit gedämmtem Fensterrahmen)
- Lüftungsanlage mit hocheffizienter Wärmerückgewinnung für das gesamte Gebäude
- Wärmeversorgung: Anschluss ans Fernwärmenetz der Stadt
- Passivhaus: gemäß Vorgaben des Passivhaus-Instituts Darmstadt als "qualitätsgeprüftes Passivhaus" zertifiziert

Abb. 35

Dienstgebäude der Forschungsanstalt für Waldökologie und Forstwirtschaft Trippstadt

Energiestandard: Energiegewinnhaus und zertifiziertes Passivhaus

- Fertigstellung: 2007

- Nettogrundfläche: circa 300 Quadratmeter

Nutzung: Bürogebäude

- gegenüber EnEV 2004 um circa 80 Prozent reduzierter Heizwärmebedarf

- Holzbauweise

- Hochwärmegedämmte Gebäudehülle (Holzständerbauweise mit circa 380 Millimeter Zellulosedämmung, Dreifachverglasung mit gedämmtem Fensterrahmen)
- Lüftungsanlage mit hocheffizienter Wärmerückgewinnung für das gesamte Gebäude
- Wärmeversorgung: 8-Kilowatt-Wärmepumpe und 2 Erdsonden
- Ökologische Baustoffe (Holz, Zellulose-Dämmung)
- Passivhaus: gemäß Vorgaben des Passivhaus-Instituts Darmstadt als "qualitätsgeprüftes Passivhaus" zertifiziert
- Energiegewinnhaus: Die Fotovoltaikanlage auf dem Dach erzeugt mehr Energie, als im Gebäude verbraucht wird (Heizung, Warmwasser, Kälte, Lüftung, Beleuchtung, Nutzerstrom wie Arbeitsmittel)

Abb. 36 Energiegewinnhaus/Passivhaus Trippstadt

Foto: Matthias Langer, Mainz

4. Zusammenfassung und Ausblick

Für die Hochschulliegenschaften ist zwischen dem ersten Berichtsjahr 2007 und 2015 insgesamt eine Reduktion des klimabereinigten Endenergieverbrauchs für Heizung und Warmwasser und ein Anstieg des Stromverbrauchs festzustellen. Die Verbrauchsdaten werden im Hochschulbereich durch standortweises Abfragen der rechnungsmäßigen Medienverbräuche ermittelt. Mit dem 2011 eingeführten Energie-Controlling-Programm, mit dem der Strom- und Wärmeverbrauch der meisten Hochschulgebäude über Dauermessungen erfasst wird, können sowohl der Nutzer als auch der Landesbetrieb LBB auf die gleiche Datenbasis zurückgreifen, die es ermöglicht, Energieeinsparpotenziale zu erkennen und entsprechende Maßnahmen einzuleiten. Der Energieverbrauch (Wärme und Strom) der Hochschulen ist allerdings stärker als in anderen Landesliegenschaften von speziellen Nutzungen und Forschungseinrichtungen abhängig.

Für die LBB-Liegenschaften ohne Hochschulen liegen Verbräuche und Kosten bereits seit 2002 vor. Es zeichnen sich folgende Entwicklungen ab: Der auf die Fläche bezogene klimabereinigte Endenergieverbrauch für Heizung und Warmwasser sank innerhalb von 13 Jahren um insgesamt über 25 Prozent. Hier spiegeln sich vor allem die seit Jahren stattfindenden Sanierungen wider, die auch den Wärmeverbrauch reduzieren. Der flächenspezifische Stromverbrauch stieg dagegen aufgrund des erhöhten Ausstattungs- und Kühlbedarfs im gleichen Zeitraum um circa 5 Prozent. Als positives Zeichen ist allerdings zu werten, dass der Stromverbrauch seit 2008 nahezu konstant ist und seit 2010 eine sinkende Tendenz zu verzeichnen ist. Wir werden beobachten, ob sich der Trend fortsetzt. Auch von Nutzerseite müssen hierbei noch Anstrengungen unternommen werden (z. B. durch Beschaffung stromsparender Geräte).

Die Europäische Union betont in der Richtlinie 2006/32/EG vom 5. April 2006 bezüglich "Endenergieeffizienz und Energiedienstleistungen" (sogenannte Energie-Dienstleistungsrichtlinie) die besondere Vorbildfunktion des "öffentlichen Sektors" und legt für die Mitgliedsstaaten einen Energieeinsparrichtwert von 9 Prozent innerhalb von 9 Jahren fest (Dies entspricht einer jährlichen Reduktion des Endenergieverbrauchs von 1,04 Prozent.). Addiert man die flächenbezogenen Energieverbräuche der LBB-Liegenschaften ohne Hochschulen für Wärme (klimabereinigt) und Strom, so ergibt sich eine durchschnittliche jährliche Reduktion des Endenergieverbrauchs um circa 1,4 Prozent. Der Landesbetrieb LBB geht hier also mit gutem Beispiel voran. Positiv ist auch der Trend, dass die flächenspezifischen Emissionen im CO₂-Äquivalent seit 2002 um fast 20 Prozent gesunken sind.

Der spezifische Wasserverbrauch konnte um rund 20 Prozent gesenkt werden; der verstärkte Einsatz von wassersparenden Armaturen und der bewusstere Umgang mit Wasser zeigen ihre Wirkung.

Im Neubaubereich nimmt der Landesbetrieb LBB unter den Bauverwaltungen der Bundesländer mit 4 zertifizierten Passivhäusern und etlichen Niedrigstenergiegebäuden, die nahezu

Passivhausstandard erreichen, eine Vorreiterrolle ein. Die in 2006 eingeführte und zuletzt im Dezember 2016 aktualisierte LBB-Richtlinie zum energieeffizienten Bauen und Sanieren gibt sowohl beim Neubau als auch bei Sanierungen verbesserte energetische Standards für alle LBB-Liegenschaften vor.

Der Anteil regenerativer Energien, der Bau von Fotovoltaik- und Solarthermieanlagen auf Dächern von Landesliegenschaften und der Anteil von über Kraft-Wärme-Kopplung (BHKW) erzeugter Wärme wird weiter vorangetrieben und ausgebaut. Die über Biomasse (Pellets und Hackschnitzel) erzeugte Wärmemenge konnte innerhalb von 13 Jahren deutlich erhöht werden (2015 circa 8,7 Prozent des gesamten Wärmeverbrauchs). Circa 10 Prozent der gesamten Wärmemenge und rund 7 Prozent des gesamten Strombedarfs wurden 2015 über Kraft-Wärme-Kopplung gedeckt. Der über Fotovoltaikanlagen erzeugte Strom konnte seit 2003 mit durchschnittlich 5 Neuanlagen pro Jahr ebenfalls deutlich gesteigert werden (2015: circa 2,7 Prozent des gesamten Stromverbrauchs).

Mit der Zentralisierung der Rechnungsprüfung (über 2000 geprüfte Versorgerrechnungen für die Medien Strom und Wärme im Jahr, Gesamtkosten von circa 44,5 Mio. Euro) und deren Auswertung übernimmt das Energiemanagement einen wichtigen Teil des Vertragsmanagements zur Optimierung der Energiekosten. Auch die europaweiten Strom-, Gas- und Biomasseausschreibungen tragen zur Kostenoptimierung in Landesliegenschaften bei.

In den Jahren 2010 und 2011 konnten insgesamt circa 80 Prozent (etwa 100 Gigawattstunden) der vom Landesbetrieb LBB ausgeschriebenen Sondervertragskunden ohne Zusatzkosten auf Ökostrom umgestellt werden.

Der zukünftige Schwerpunkt beim Bauen und Sanieren von Landesliegenschaften wird um den Bereich des nachhaltigen Bauens erweitert werden. Dazu wird zurzeit beim Landesbetrieb LBB eine Strategie entwickelt, wie dieser Aspekt zukünftig in die Planung und die Ausschreibung von Bauvorhaben einfließen und nachgewiesen werden kann. Ein wesentlicher Baustein zur Bewertung der Nachhaltigkeit wird die Berechnung von Lebenszykluskosten sein, die nicht nur die einmaligen Investitionskosten, sondern alle Bewirtschaftungskosten und vor allem die Energieverbräuche über die Nutzungsdauer eines Gebäudes bilanziert.

Quellen Bildmaterial:

Soweit nicht anders vermerkt: Landesbetrieb Liegenschafts-und Baubetreuung Rheinland-Pfalz

Bilder Titel:

Solarcarport Landau + Fassadenanlage + Speyer Kolleg: Landesbetrieb LBB Gebäude E + Gebäude F, HS Kaiserlautern: Thomas Brenner, Kaiserslautern

Alle anderen: Rüdiger Mosler, Nochern

Herausgeber:

Landesbetrieb Liegenschafts- und Baubetreuung Rheinland-Pfalz

Zentrale Mainz

Rheinstraße 4E (Fort Malakoff)

55116 Mainz

Tel.: (0 61 31) - 2 04 96-0

Fax: (0 61 31) - 2 04 96-251

E-Mail: postfach.zentrale@lbbnet.de

Besuchen Sie unsere Website: www.lbbnet.de

Stand:

Juli 2018